您所在的位置: 首页? 活动资讯

【百家大讲堂】第228期:等离子体纳米颗粒的定制生长与组装

编辑: 研究生院 发布日期: 2019-07-25 浏览量:
【百家大讲堂】第228期:等离子体纳米颗粒的定制生长与组装
  讲座题目:等离子体纳米颗粒的定制生长与组装?
  报? 告 人:Luis M. Liz-Marzán?
  时?   间:2019年8月15日下午15:00-17:00
  地 ? ?点:中关村校区研究生楼101报告厅?
  主办单位:研究生院、材料学院
  报名方式:登录北京理工大学微信企业号---第二课堂---课程报名中选择“【百家大讲堂】第 228期:等离子体纳米颗粒的定制生长与组装? ”
?
【主讲人简介】
?Luis M. Liz-Marzá教授博士毕业于圣地亚哥德孔波斯特拉大学,并且在van't Hoff实验室的从事过博士后的研究,目前是Ikerbasque研究教授和巴斯克生物材料合作研究中心(CIC biomaGUNE)的科学主任。自2015年起,他还担任生物医学研究网络中心:生物工程、生物材料和纳米医学(Ciber BBN)的CIC生物基因节点的首席研究员。 Luis Liz-Marzán共同撰写了450多篇研究论文和评论,其中引用次数超过40000次,h指数为102,被称为Highly Cited Researcher(2014-2018)。他还共同撰写了18本书,并共同发明了8项专利。他在25个不同国家的会议和200多场研讨会上发表了250多场邀请讲座,并组织了21次以上的国际会议。他连续两次获得ERC高级助学金(2011-2016; 2018-2023),并获得了许多研究奖项,如课程VITAE,洪堡研究奖(2010年),杜邦科学奖(2010年), Burdinola奖(2011年),首届ACS纳米讲座奖(2012年)和Langmuir讲座奖(2012年),ECIS? - 罗地亚奖(2013年),西班牙皇家化学学会奖章(2014年),Francqui主席奖(2014年) -2015),Georges Smets主席(2015年),Rey Jaime I基础研究奖(2015年),Blaise Pascal欧洲科学院材料科学奖(2017年),国家化学科学与技术研究奖(2018年) ),Hermanos Elhuyar-Hans Goldschmidt奖(2019年),当选为西班牙皇家物理和自然科学学院(2015年)和欧洲科学院院士(2017年)的记者。他是英国皇家化学学会和美国光学学会会员,并且是西班牙皇家化学和物理学会胶体和界面部门的主席。他曾担任ACS期刊Langmuir(2009-2016)的高级编辑,ACS Omega首席编辑(2016-2018),现任ACS Nano副主编。 Liz-Marzán还担任10种期刊的编辑委员会成员,其中包括科学编辑评审委员会.Liz-Marzán课题组共有30名在校博士生和50名博士后,4名全职教授,14名在学术界担任终身职位,2名在工业界担任高级研究员。7人担任终身职位,4人担任在大学和研究中心的专业技术人员。Luis M. Liz-Marzá被认为是胶体化学在纳米等离子体技术(当今拥挤)领域应用的世界领先者之一。Luis M. Liz-Marzá是金属纳米粒子胶体合成的先驱之一,在控制此类纳米粒子的形态以及裁剪纳米粒子表面化学和组装方面有着重要的贡献。
?Luis M. Liz-Marzán is a PhD from the University of Santiago de Compostela? and has been postdoc at the van't Hoff Laboratory, he is currently Ikerbasque Research Professor and Scientific Director of the Basque? Centre for Cooperative Research in Biomaterials (CIC biomaGUNE), in San Sebastián.Since 2015 he is also the PI of the CIC biomaGUNE node of the Biomedical Research Networking? Center: Bioengineering, Biomaterials and Nanomedicine (Ciber-BBN).? Luis Liz-Marzán has co-authored over 450 research articles and reviews, which have received? over 40000 citations, with an h-index of 102, being named as Highly Cited Researcher (2014- 2018). He has also co-authored 18 book chapters and is co-inventor of 8 patents. He delivered? 250+ invited lectures at conferences and 200+ seminars in 25 different countries, and? organized 21+ international conferences. He has been awarded two consecutive ERC? Advanced grants (2011- 2016; 2018 - 2023), and received numerous research prizes, such as? 1 CURRICULUM VITAE (maximum 4 pages) the Humboldt Research Award (2010), Dupont Prize for Science (2010), Burdinola Award? (2011), the inaugural ACS Nano Lectureship Award (2012) and the Langmuir Lectureship? (2012), the ECIS - Rhodia Award (2013), the Medal of the Spanish Royal Society of Chemistry (2014), the Francqui Chair (2014-2015), the Georges Smets Chair (2015), the Rey Jaime I Award in Basic Research (2015), Blaise Pascal Medal in Materials Science of the European? Academy of Sciences (2017), National Research Award on Chemical Science and Technology? (2018), Hermanos Elhuyar-Hans Goldschmidt Award (2019) and was elected correspondent member of the Royal Academy of Exact, Physical and Natural Sciences of Spain (2015) and? Fellow of the European Academy of Sciences (2017). He is a Fellow of the Royal Society of? Chemistry and of the Optical Society of America, and has been President of the Colloids and Interfaces Division of the Spanish Royal Societies of Chemistry and Physics. He has been Senior Editor of the ACS journal Langmuir (2009-2016), inaugural Editor in Chief of ACS Omega (2016-2018) and currently is Associate Editor of ACS Nano. Liz-Marzán also serves as editorial board member of 10 journals, including the Board of Reviewing Editors of Science.Out of 30 supervised PhD students and 50 postdocs, 4 are full professors, 14 hold tenured positions in Academia, 2 are senior researchers at Industry, 7 are on tenure track positions and 4 have permanent jobs as specialized technicians at universities and research centers.Luis M. Liz-Marzán is considered as one of the world leaders in the application of colloid chemistry to the (nowadays crowded) field of nanoplasmonics. Liz-Marzán has been one of the pioneers in the colloidal synthesis of metal nanoparticles, with highly relevant contributions toward the control over the morphology of such nanoparticles as well as toward tailoring nanoparticle surface chemistry and assembly.
?
【讲座信息】
纳米等离子体激元可以定义为使用尺寸远小于辐射波长的材料研究光的操纵的一种科学。该技术可广泛用于传感和诊断等各种领域。纳米弹性体的一个重要组成部分是纳米结构材料,通常是由贵金属制成的,由于它们能够支持自由(传导)电子的相干振荡,因此可以非常有效地吸收和散射光。众所周知,150多年前“精细分裂”金属被研究发现其具有显着光学响应,但最近开发的复杂表征技术和建模方法已经大大重新激发了该领域的研究热点。其中一个最重要的发展就是纳米等离子体制造方法的创新研究,这使我们能够精确控制纳米结构金属的成分和形态。胶体化学法特别具有简单和大规模生产的优点,同时可以改变其中的参数来引导纳米颗粒形态,以及引导表面性质和后续加工过程。
本次报告将基于一系列的纳米等离子体制造方法,这些方法可以微调纳米等离子体构建块的形态,最终目标是改善其光学特性及其在传感应用中的性能。本次报告稿还会列举几个关于改进的合成和受控自组装成纳米结构材料的实例,其主要测纳米结构是金纳米颗粒。
Nanoplasmonics can be defined as the science studying the manipulation of light using materials of size much smaller than the radiation wavelength. This technology finds applications in various fields including sensing and diagnostics. An essential component of nanoplasmonics are the nanostructured materials, typically noble metals, which can very efficiently absorb and scatter light because of their ability to support coherent oscillations of free (conduction) electrons. Although the remarkable optical response of “finely divided” metals is well known since more than 150 years ago, the recent development of sophisticated characterization techniques and modeling methods has dramatically reactivated the field. An extremely important pillar on which the development of nanoplasmonics has been based comprises the impressive advancement in fabrication methods, which provide us with an exquisite control over the composition and morphology of nanostructured metals. Colloid chemistry methods in particular have the advantage of simplicity and large scale production, while offering a number of parameters that can be used as a handle to direct not only nanoparticle morphology but also surface properties and subsequent processing.
This talk will be based on a selection of fabrication methods that allow fine tuning of the morphology of nanoplasmonic building blocks, with the ultimate goal of improving their optical properties and their performance in sensing applications. Several examples will be presented regarding improved synthesis and controlled self-assembly into nanostructured materials, focusing mainly on gold nanoparticles.
?